3.5. Supported Atomic Operations¶
Numba provides access to some of the atomic operations supported in CUDA, in the numba.cuda.atomic class.
Those that are presently implemented are as follows:
- class numba.cuda.atomic¶
Namespace for atomic operations
- class add¶
add(ary, idx, val)
Perform atomic ary[idx] += val. Supported on int32, float32, and float64 operands only.
- class atomic.max¶
max(ary, idx, val)
Perform atomic ary[idx] = max(ary[idx], val). NaN is treated as a missing value, so max(NaN, n) == max(n, NaN) == n. Note that this differs from Python and Numpy behaviour, where max(a, b) is always a when either a or b is a NaN.
Supported on float64 operands only.
3.5.1. Example¶
The following code demonstrates the use of numba.cuda.atomic.max to find the maximum value in an array. Note that this is not the most efficient way of finding a maximum in this case, but that it serves as an example:
from numba import cuda
import numpy as np
@cuda.jit
def max_example(result, values):
"""Find the maximum value in values and store in result[0]"""
tid = cuda.threadIdx.x
bid = cuda.blockIdx.x
bdim = cuda.blockDim.x
i = (bid * bdim) + tid
cuda.atomic.max(result, 0, values[i])
arr = np.random.rand(16384)
result = np.zeros(1, dtype=np.float64)
max_example[256,64](result, arr)
print(result[0]) # Found using cuda.atomic.max
print(max(arr)) # Print max(arr) for comparision (should be equal!)