You are viewing archived documentation from the old Numba documentation site. The current documentation is located at https://numba.readthedocs.io.

CUDA Ufuncs and Generalized Ufuncs

This page describes the CUDA ufunc-like object.

To support the programming pattern of CUDA programs, CUDA Vectorize and GUVectorize cannot produce a conventional ufunc. Instead, a ufunc-like object is returned. This object is a close analog but not fully compatible with a regular NumPy ufunc. The CUDA ufunc adds support for passing intra-device arrays (already on the GPU device) to reduce traffic over the PCI-express bus. It also accepts a stream keyword for launching in asynchronous mode.

Example: Basic Example

import math
from numba import vectorize, cuda
import numpy as np

@vectorize(['float32(float32, float32, float32)',
            'float64(float64, float64, float64)'],
def cu_discriminant(a, b, c):
    return math.sqrt(b ** 2 - 4 * a * c)

N = 10000
dtype = np.float32

# prepare the input
A = np.array(np.random.sample(N), dtype=dtype)
B = np.array(np.random.sample(N) + 10, dtype=dtype)
C = np.array(np.random.sample(N), dtype=dtype)

D = cu_discriminant(A, B, C)

print(D)  # print result

Example: Calling Device Functions

All CUDA ufunc kernels have the ability to call other CUDA device functions:

from numba import vectorize, cuda

# define a device function
@cuda.jit('float32(float32, float32, float32)', device=True, inline=True)
def cu_device_fn(x, y, z):
    return x ** y / z

# define a ufunc that calls our device function
@vectorize(['float32(float32, float32, float32)'], target='cuda')
def cu_ufunc(x, y, z):
    return cu_device_fn(x, y, z)

Generalized CUDA ufuncs

Generalized ufuncs may be executed on the GPU using CUDA, analogous to the CUDA ufunc functionality. This may be accomplished as follows:

from numba import guvectorize

@guvectorize(['void(float32[:,:], float32[:,:], float32[:,:])'],
             '(m,n),(n,p)->(m,p)', target='cuda')
def matmulcore(A, B, C):

There are times when the gufunc kernel uses too many of a GPU’s resources, which can cause the kernel launch to fail. The user can explicitly control the maximum size of the thread block by setting the max_blocksize attribute on the compiled gufunc object.

from numba import guvectorize

@guvectorize(..., target='cuda')
def very_complex_kernel(A, B, C):

very_complex_kernel.max_blocksize = 32  # limits to 32 threads per block