Numba documentationΒΆ
This is the Numba documentation. Unless you are already acquainted with Numba, we suggest you start with the User manual.
- 1. User Manual
- 1.1. Overview
- 1.2. Getting started
- 1.3. Compiling Python code with @jit
- 1.4. Flexible specializations with @generated_jit
- 1.5. Creating Numpy universal functions
- 1.6. Compiling python classes with @jitclass
- 1.7. Compiling code ahead of time
- 1.8. Troubleshooting and tips
- 1.9. Frequently Asked Questions
- 1.10. Examples
- 2. Reference Manual
- 3. Numba for CUDA GPUs
- 3.1. Overview
- 3.2. Writing CUDA Kernels
- 3.3. Memory management
- 3.4. Writing Device Functions
- 3.5. Supported Python features in CUDA Python
- 3.6. Supported Atomic Operations
- 3.7. Device management
- 3.8. The Device List
- 3.9. Examples
- 3.10. Debugging CUDA Python with the the CUDA Simulator
- 3.11. GPU Reduction
- 3.12. CUDA Ufuncs and Generalized Ufuncs
- 4. CUDA Python Reference
- 5. Numba for HSA APUs
- 6. Extending Numba
- 7. Developer Manual
- 8. Numba Enhancement Proposals
- 9. Glossary
- 10. Release Notes
- 10.1. Version 0.24.0
- 10.2. Version 0.23.1
- 10.3. Version 0.23.0
- 10.4. Version 0.22.1
- 10.5. Version 0.22.0
- 10.6. Version 0.21.0
- 10.7. Version 0.20.0
- 10.8. Version 0.19.2
- 10.9. Version 0.19.1
- 10.10. Version 0.19.0
- 10.11. Version 0.18.2
- 10.12. Version 0.18.1
- 10.13. Version 0.17.0
- 10.14. Version 0.16.0
- 10.15. Version 0.15.1
- 10.16. Version 0.15
- 10.17. Version 0.14
- 10.18. Version 0.13.4
- 10.19. Version 0.13.3
- 10.20. Version 0.13.2
- 10.21. Version 0.13.1
- 10.22. Version 0.13
- 10.23. Version 0.12.2
- 10.24. Version 0.12.1
- 10.25. Version 0.12
- 10.26. Version 0.11
- 10.27. Version 0.10
- 10.28. Version 0.9
- 10.29. Version 0.8
- 10.30. Version 0.7.2
- 10.31. Version 0.7.1
- 10.32. Version 0.7
- 10.33. Version 0.6.1
- 10.34. Version 0.6
- 10.35. Version 0.5
- 10.36. Version 0.4
- 10.37. Version 0.3.2
- 10.38. Version 0.3
- 10.39. Version 0.2