Numba 0.20.0 documentation
  • previous
  • next
  • index
  • Show Source

Previous topic

2.6. Deviations from Python semantics

Next topic

3.1. Overview

This Page

  • Show Source

Quick search

Enter search terms or a module, class or function name.

3. Numba for CUDA GPUsΒΆ

  • 3.1. Overview
    • 3.1.1. Terminology
    • 3.1.2. Programming model
    • 3.1.3. Requirements
      • 3.1.3.1. Supported GPUs
      • 3.1.3.2. Software
    • 3.1.4. Missing CUDA Features
  • 3.2. Writing CUDA Kernels
    • 3.2.1. Introduction
    • 3.2.2. Kernel declaration
    • 3.2.3. Kernel invocation
      • 3.2.3.1. Choosing the block size
      • 3.2.3.2. Multi-dimensional blocks and grids
    • 3.2.4. Thread positioning
      • 3.2.4.1. Absolute positions
      • 3.2.4.2. Further Reading
  • 3.3. Memory management
    • 3.3.1. Data transfer
      • 3.3.1.1. Device arrays
    • 3.3.2. Pinned memory
    • 3.3.3. Streams
    • 3.3.4. Shared memory and thread synchronization
    • 3.3.5. Local memory
  • 3.4. Writing Device Functions
  • 3.5. Supported Atomic Operations
    • 3.5.1. Example
  • 3.6. Device management
    • 3.6.1. Device Selection
  • 3.7. The Device List
  • 3.8. Examples
    • 3.8.1. Matrix multiplication
  • 3.9. Debugging CUDA Python with the the CUDA Simulator
    • 3.9.1. Using the simulator
    • 3.9.2. Supported features
  • Numba 0.20.0 documentation
  • previous
  • next
  • index
  • top
© Copyright 2012-2015, Continuum Analytics. Created using Sphinx 1.3.1.