2.6. Supported Python features¶
Apart from the Language part below, which applies to both object mode and nopython mode, this page only lists the features supported in nopython mode.
2.6.1. Language¶
2.6.1.1. Constructs¶
Numba strives to support as much of the Python language as possible, but some language features are not available inside Numba-compiled functions. The following Python language features are not currently supported:
- Class definition
- Exception handling (
try .. except
,try .. finally
) - Context management (the
with
statement) - Some comprehensions (list comprehension is supported, but not dict, set or generator comprehensions)
- Generator delegation (
yield from
)
The raise
statement is supported in several forms:
raise
(to re-raise the current exception)raise SomeException
raise SomeException(<arguments>)
: in nopython mode, constructor arguments must be compile-time constants
Similarly, the assert
statement is supported with or without an error
message.
2.6.1.2. Inner function and closure¶
Numba now supports inner functions as long as they are non-recursive and only called locally, but not passed as argument or returned as result. The use of closure variables (variables defined in outer scopes) within an inner function is also supported.
2.6.1.3. Function calls¶
Numba supports function calls using positional and named arguments, as well
as arguments with default values and *args
(note the argument for
*args
can only be a tuple, not a list). Explicit **kwargs
are
not supported.
Function calls to locally defined inner functions are supported as long as they can be fully inlined.
2.6.1.3.1. Recursive calls¶
Most recursive call patterns are supported. The only restriction is that the recursive callee must have a control-flow path that returns without recursing. Numba is able to type-infer recursive functions without specifying the function type signature (which is required in numba 0.28 and earlier). Recursive calls can even call into a different overload of the function.
2.6.1.4. Generators¶
Numba supports generator functions and is able to compile them in object mode and nopython mode. The returned generator can be used both from Numba-compiled code and from regular Python code.
Coroutine features of generators are not supported (i.e. the
generator.send()
, generator.throw()
, generator.close()
methods).
2.6.2. Built-in types¶
2.6.2.1. int, bool¶
Arithmetic operations as well as truth values are supported.
The following attributes and methods are supported:
.conjugate()
.real
.imag
2.6.2.2. float, complex¶
Arithmetic operations as well as truth values are supported.
The following attributes and methods are supported:
.conjugate()
.real
.imag
2.6.2.3. tuple¶
The following operations are supported:
- tuple construction
- tuple unpacking
- comparison between tuples
- iteration and indexing over homogenous tuples
- addition (concatenation) between tuples
- slicing tuples with a constant slice
2.6.2.4. list¶
Creating and returning lists from JIT-compiled functions is supported,
as well as all methods and operations. Lists must be strictly homogenous:
Numba will reject any list containing objects of different types, even if
the types are compatible (for example, [1, 2.5]
is rejected as it
contains a int
and a float
).
Note
When passing a list into a JIT-compiled function, any modifications made to the list will not be visible to the Python interpreter until the function returns.
Warning
List sorting currently uses a quicksort algorithm, which has different performance characterics than the algorithm used by Python.
2.6.2.4.1. List comprehension¶
Numba supports list comprehension, but not the creation of nested list.
2.6.2.5. set¶
All methods and operations on sets are supported in JIT-compiled functions.
Sets must be strictly homogenous: Numba will reject any set containing
objects of different types, even if the types are compatible (for example,
{1, 2.5}
is rejected as it contains a int
and a float
).
Note
When passing a set into a JIT-compiled function, any modifications made to the set will not be visible to the Python interpreter until the function returns.
2.6.2.7. bytes, bytearray, memoryview¶
The bytearray
type and, on Python 3, the bytes
type
support indexing, iteration and retrieving the len().
The memoryview
type supports indexing, slicing, iteration,
retrieving the len(), and also the following attributes:
2.6.3. Built-in functions¶
The following built-in functions are supported:
abs()
bool
complex
divmod()
enumerate()
float
int
: only the one-argument formiter()
: only the one-argument formlen()
min()
max()
next()
: only the one-argument formprint()
: only numbers and strings; nofile
orsep
argumentrange
: semantics are similar to those of Python 3 even in Python 2: a range object is returned instead of an array of values.round()
sorted()
: thekey
argument is not supportedtype()
: only the one-argument form, and only on some types (e.g. numbers and named tuples)zip()
2.6.4. Standard library modules¶
2.6.4.1. array
¶
Limited support for the array.array
type is provided through
the buffer protocol. Indexing, iteration and taking the len() is supported.
All type codes are supported except for "u"
.
2.6.4.3. collections
¶
Named tuple classes, as returned by collections.namedtuple()
, are
supported in the same way regular tuples are supported. Attribute access
and named parameters in the constructor are also supported.
Creating a named tuple class inside Numba code is not supported; the class must be created at the global level.
2.6.4.4. ctypes
¶
Numba is able to call ctypes-declared functions with the following argument and return types:
2.6.4.5. enum
¶
Both enum.Enum
and enum.IntEnum
subclasses are supported.
2.6.4.6. math
¶
The following functions from the math
module are supported:
math.acos()
math.acosh()
math.asin()
math.asinh()
math.atan()
math.atan2()
math.atanh()
math.ceil()
math.copysign()
math.cos()
math.cosh()
math.degrees()
math.erf()
math.erfc()
math.exp()
math.expm1()
math.fabs()
math.floor()
math.frexp()
math.gamma()
math.hypot()
math.isfinite()
math.isinf()
math.isnan()
math.ldexp()
math.lgamma()
math.log()
math.log10()
math.log1p()
math.pow()
math.radians()
math.sin()
math.sinh()
math.sqrt()
math.tan()
math.tanh()
math.trunc()
2.6.4.7. operator
¶
The following functions from the operator
module are supported:
operator.add()
operator.and_()
operator.div()
(Python 2 only)operator.eq()
operator.floordiv()
operator.ge()
operator.gt()
operator.iadd()
operator.iand()
operator.idiv()
(Python 2 only)operator.ifloordiv()
operator.ilshift()
operator.imatmul()
(Python 3.5 and above)operator.imod()
operator.imul()
operator.invert()
operator.ior()
operator.ipow()
operator.irshift()
operator.isub()
operator.itruediv()
operator.ixor()
operator.le()
operator.lshift()
operator.lt()
operator.matmul()
(Python 3.5 and above)operator.mod()
operator.mul()
operator.ne()
operator.neg()
operator.not_()
operator.or_()
operator.pos()
operator.pow()
operator.rshift()
operator.sub()
operator.truediv()
operator.xor()
2.6.4.8. random
¶
Numba supports top-level functions from the random
module, but does
not allow you to create individual Random instances. A Mersenne-Twister
generator is used, with a dedicated internal state. It is initialized at
startup with entropy drawn from the operating system.
random.betavariate()
random.expovariate()
random.gammavariate()
random.gauss()
random.getrandbits()
: number of bits must not be greater than 64random.lognormvariate()
random.normalvariate()
random.paretovariate()
random.randint()
random.random()
random.randrange()
random.seed()
: with an integer argument onlyrandom.shuffle()
: the sequence argument must be a one-dimension Numpy array or buffer-providing object (such as abytearray
orarray.array
); the second (optional) argument is not supportedrandom.uniform()
random.triangular()
random.vonmisesvariate()
random.weibullvariate()
Note
Calling random.seed()
from non-Numba code (or from object mode
code) will seed the Python random generator, not the Numba random generator.
Note
The generator is not thread-safe when releasing the GIL.
Also, under Unix, if creating a child process using os.fork()
or the
multiprocessing
module, the child’s random generator will inherit
the parent’s state and will therefore produce the same sequence of
numbers (except when using the “forkserver” start method under Python 3.4
and later).
See also
Numba also supports most additional distributions from the Numpy random module.
2.6.5. Third-party modules¶
2.6.5.1. cffi
¶
Similarly to ctypes, Numba is able to call into cffi-declared external functions, using the following C types and any derived pointer types:
char
short
int
long
long long
unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long
int8_t
uint8_t
int16_t
uint16_t
int32_t
uint32_t
int64_t
uint64_t
float
double
ssize_t
size_t
void
The from_buffer()
method of cffi.FFI
and CompiledFFI
objects is
supported for passing Numpy arrays and other buffer-like objects. Only
contiguous arguments are accepted. The argument to from_buffer()
is converted to a raw pointer of the appropriate C type (for example a
double *
for a float64
array).
Additional type mappings for the conversion from a buffer to the appropriate C type may be registered with Numba. This may include struct types, though it is only permitted to call functions that accept pointers to structs - passing a struct by value is unsupported. For registering a mapping, use:
-
numba.cffi_support.
register_type
(cffi_type, numba_type)¶
Out-of-line cffi modules must be registered with Numba prior to the use of any of their functions from within Numba-compiled functions:
-
numba.cffi_support.
register_module
(mod)¶ Register the cffi out-of-line module
mod
with Numba.
Inline cffi modules require no registration.