Toggle navigation
Numba 0.22.1-py2.7-macosx-10.5-x86_64.egg documentation
previous
next
index
Show Source
Previous topic
Numba documentation
Next topic
1.1. Overview
This Page
Show Source
Quick search
Enter search terms or a module, class or function name.
1. User Manual
ΒΆ
1.1. Overview
1.2. Getting started
1.2.1. Installing using Conda
1.2.2. Installing from source
1.2.3. Checking your installation
1.3. Compiling Python code with
@jit
1.3.1. Basic usage
1.3.1.1. Lazy compilation
1.3.1.2. Eager compilation
1.3.2. Calling and inlining other functions
1.3.3. Signature specifications
1.3.4. Compilation options
1.3.4.1.
nopython
1.3.4.2.
nogil
1.3.4.3.
cache
1.4. Creating Numpy universal functions
1.4.1. The
@vectorize
decorator
1.4.2. The
@guvectorize
decorator
1.4.3. Dynamic universal functions
1.5. Compiling code ahead of time
1.5.1. Overview
1.5.1.1. Benefits
1.5.1.2. Limitations
1.5.2. Usage
1.5.2.1. Standalone example
1.5.2.2. Distutils integration
1.5.2.3. Signature syntax
1.6. Troubleshooting and tips
1.6.1. What to compile
1.6.2. My code doesn’t compile
1.6.3. The compiled code is too slow
1.6.4. Disabling JIT compilation
1.6.5. Debugging CUDA Python code
1.7. Frequently Asked Questions
1.7.1. Programming
1.7.1.1. Can I pass a function as an argument to a jitted function?
1.7.1.2. Numba doesn’t seem to care when I modify a global variable
1.7.1.3. Can I debug a jitted function?
1.7.2. Performance
1.7.2.1. Does Numba inline functions?
1.7.2.2. Does Numba vectorize array computations (SIMD)?
1.7.2.3. Does Numba parallelize code?
1.7.2.4. Can Numba speed up short-running functions?
1.7.2.5. There is a delay when JIT-compiling a complicated function, how can I improve it?
1.7.3. Integration with other utilities
1.7.3.1. Can I “freeze” an application which uses Numba?
1.7.3.2. I get errors when running a script twice under Spyder
1.8. Examples
1.8.1. Mandelbrot
1.8.2. Moving average
1.8.3. Multi-threading