2.4. Supported Python features¶
Apart from the Language part below, which applies to both object mode and nopython mode, this page only lists the features supported in nopython mode.
2.4.1. Language¶
2.4.1.1. Constructs¶
Numba strives to support as much of the Python language as possible, but some language features are not available inside Numba-compiled functions:
- Function definition
- Class definition
- Exception handling (
try .. except
,try .. finally
) - Context management (the
with
statement) - Comprehensions (either list, dict, set or generator comprehensions)
- Generator delegation (
yield from
)
The raise
statement is supported in several forms:
raise
(to re-raise the current exception)raise SomeException
raise SomeException(<arguments>)
: in nopython mode, constructor arguments must be compile-time constants
Similarly, the assert
statement is supported with or without an error
message.
2.4.1.2. Function calls¶
Numba supports function calls using positional and named arguments, as well
as arguments with default values and *args
. Explicit **kwargs
are
not supported.
2.4.1.3. Generators¶
Numba supports generator functions and is able to compile them in object mode and nopython mode. The returned generator can be used both from Numba-compiled code and from regular Python code.
Coroutine features of generators are not supported (i.e. the
generator.send()
, generator.throw()
, generator.close()
methods).
2.4.2. Built-in types¶
2.4.2.1. int, bool¶
Arithmetic operations as well as truth values are supported.
The following attributes and methods are supported:
.conjugate()
.real
.imag
2.4.2.2. float, complex¶
Arithmetic operations as well as truth values are supported.
The following attributes and methods are supported:
.conjugate()
.real
.imag
2.4.2.3. tuple¶
Tuple construction and unpacking is supported, as well as the following operations:
- comparison between tuples
- iteration over homogenous tuples
2.4.2.5. bytes, bytearray, memoryview¶
The bytearray
type and, on Python 3, the bytes
type
support indexing, iteration and retrieving the len().
The memoryview
type supports indexing, slicing, iteration,
retrieving the len(), and also the following attributes:
2.4.3. Built-in functions¶
The following built-in functions are supported:
abs()
bool
complex
enumerate()
float
int
: only the one-argument formlen()
min()
: only the multiple-argument formmax()
: only the multiple-argument formprint()
: only numbers and strings; nofile
orsep
argumentrange
: semantics are similar to those of Python 3 even in Python 2: a range object is returned instead of an array of values.round()
zip()
2.4.4. Standard library modules¶
2.4.4.1. array
¶
Limited support for the array.array
type is provided through
the buffer protocol. Indexing, iteration and taking the len() is supported.
All type codes are supported except for "u"
.
2.4.4.3. ctypes
¶
Numba is able to call ctypes-declared functions with the following argument and return types:
2.4.4.4. math
¶
The following functions from the math
module are supported:
math.acos()
math.acosh()
math.asin()
math.asinh()
math.atan()
math.atan2()
math.atanh()
math.ceil()
math.copysign()
math.cos()
math.cosh()
math.degrees()
math.erf()
math.erfc()
math.exp()
math.expm1()
math.fabs()
math.floor()
math.frexp()
math.gamma()
math.hypot()
math.isfinite()
math.isinf()
math.isnan()
math.ldexp()
math.lgamma()
math.log()
math.log10()
math.log1p()
math.pow()
math.radians()
math.sin()
math.sinh()
math.sqrt()
math.tan()
math.tanh()
math.trunc()
2.4.4.5. operator
¶
The following functions from the operator
module are supported:
operator.add()
operator.and_()
operator.div()
(Python 2 only)operator.eq()
operator.floordiv()
operator.ge()
operator.gt()
operator.iadd()
operator.iand()
operator.idiv()
(Python 2 only)operator.ifloordiv()
operator.ilshift()
operator.imod()
operator.imul()
operator.invert()
operator.ior()
operator.ipow()
operator.irshift()
operator.isub()
operator.itruediv()
operator.ixor()
operator.le()
operator.lshift()
operator.lt()
operator.mod()
operator.mul()
operator.ne()
operator.neg()
operator.not_()
operator.or_()
operator.pos()
operator.pow()
operator.rshift()
operator.sub()
operator.truediv()
operator.xor()
2.4.4.6. random
¶
Numba supports top-level functions from the random
module, but does
not allow you to create individual Random instances. A Mersenne-Twister
generator is used, with a dedicated internal state. It is initialized at
startup with entropy drawn from the operating system.
random.betavariate()
random.expovariate()
random.gammavariate()
random.gauss()
random.getrandbits()
: number of bits must not be greater than 64random.lognormvariate()
random.normalvariate()
random.paretovariate()
random.randint()
random.random()
random.randrange()
random.seed()
: with an integer argument onlyrandom.shuffle()
: the sequence argument must be a one-dimension Numpy array or buffer-providing object (such as abytearray
orarray.array
); the second (optional) argument is not supportedrandom.uniform()
random.triangular()
random.vonmisesvariate()
random.weibullvariate()
Note
Calling random.seed()
from non-Numba code (or from object mode
code) will seed the Python random generator, not the Numba random generator.
Note
The generator is not thread-safe when releasing the GIL.
Also, under Unix, if creating a child process using os.fork()
or the
multiprocessing
module, the child’s random generator will inherit
the parent’s state and will therefore produce the same sequence of
numbers (except when using the “forkserver” start method under Python 3.4
and later).
See also
Numba also supports most additional distributions from the Numpy random module.
2.4.5. Third-party modules¶
2.4.5.1. cffi
¶
Similarly to ctypes, Numba is able to call into cffi-declared external functions, using the following C types:
char
short
int
long
long long
unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long
int8_t
uint8_t
int16_t
uint16_t
int32_t
uint32_t
int64_t
uint64_t
float
double
char *
void *
uint8_t *
ssize_t
size_t
void