Numba 0.17.0-py2.7-linux-x86_64.egg documentation
index
next
previous
Open Table Of Contents
Previous topic
3.6. Examples
Next topic
4.1. Contributing to Numba
This Page
Show Source
Quick search
Enter search terms or a module, class or function name.
Previous topic
3.6. Examples
Next topic
4.1. Contributing to Numba
This Page
Show Source
Quick search
Enter search terms or a module, class or function name.
4. Developer Manual
ΒΆ
4.1. Contributing to Numba
4.1.1. Communication
4.1.1.1. Mailing-list
4.1.1.2. Bug tracker
4.1.2. Getting set up
4.1.2.1. Build environment
4.1.2.2. Building Numba
4.1.2.3. Running tests
4.1.3. Development rules
4.1.3.1. Code reviews
4.1.3.2. Coding conventions
4.1.3.3. Stability
4.1.3.4. Platform support
4.1.4. Documentation
4.1.4.1. Main documentation
4.1.4.2. Web site homepage
4.2. Numba Architecture
4.2.1. Introduction
4.2.2. Contexts
4.2.3. Compiler Stages
4.2.3.1. Stage 1: Analyze Bytecode
4.2.3.2. Stage 2: Generate the Numba IR
4.2.3.3. Stage 3: Macro expansion
4.2.3.4. Stage 4: Infer Types
4.2.3.5. Stage 5a: Generate No-Python LLVM IR
4.2.3.6. Stage 5b: Generate Object Mode LLVM IR
4.2.3.7. Stage 6: Compile LLVM IR to Machine Code
4.3. Extending the Numba Frontend
4.3.1. Overview
4.3.1.1. Numba Types
4.3.1.2. Type Inference Mechanism
4.3.2. Tutorial
4.3.2.1. Creating a New Numba Type
4.3.2.2. Organizing Type Signatures with a Registry
4.3.2.3. Adding an Attribute Value Type Signature
4.3.2.4. Adding a Function Type Signature
4.3.2.5. Overloading Elementary Operations
4.3.2.6. Installing the Registry in a Typing Context
4.3.2.7. Enabling Type Inference for Function Arguments and Globals
4.3.3. Conclusion
4.4. Extending the Numba backend
4.4.1. Helper Lib
4.4.2. Python API
4.4.3. Target Interval Objects
4.4.4. Base Target
index
next
previous
Numba 0.17.0-py2.7-linux-x86_64.egg documentation