Open Table Of Contents


Basic Types

The following table contains the elementary types currently defined by Numba.

Type Name Alias Result Type
boolean b1 uint8 (char)
bool_ b1 uint8 (char)
byte u1 unsigned char
uint8 u1 uint8 (char)
uint16 u2 uint16
uint32 u4 uint32
uint64 u8 uint64
char i1 signed char
int8 i1 int8 (char)
int16 i2 int16
int32 i4 int32
int64 i8 int64
float_ f4 float32
float32 f4 float32
double f8 float64
float64 f8 float64
complex64 c8 float complex
complex128 c16 double complex

Types can be used to specify the signature of a function:

def sum1d(array):
    sum = 0.0
    for i in range(array.shape[0]):
        sum += array[i]
    return sum

Types can also be used in Numba to declare local variables in a function:

@jit(locals=dict(array=double[:, :], scalar1=double))
def func(array):
    scalar1 = array[0, 0] # scalar is declared double
    scalar2 = double(array[0, 0])

Of course, declaring types in this example is unnecessary since the type inferencer knows the input type of array, and hence knows the type of array[i, j] to be the dtype of array.


Type declarations or casts can be useful in cases where the type inferencer doesn’t know the type, or if you want to override the type inferencer’s rules (e.g. force 32-bit floating point precision).

Variables declared in the locals dict have a single type throughout the entire function. However, any variable not declared in locals can assume different types, just like in Python:

def variable_ressign(arg):
    arg = 1.0
    arg = "hello"
    arg = object()
    var = arg
    var = "world"

However, there are some restrictions, namely that variables must have a unifyable type at control flow merge points. For example, the following code will not compile:

def incompatible_types(arg):
    if arg > 10:
        x = 1+2j
        x = 3.3

    return x        # ERROR! Inconsistent type for x!

This code is invalid because strings and integers are not compatible. However, if we do not read x after the if block, the code will compile fine, since it does not need to unify the type:

def compatible_types(arg):
    if arg > 10:
        x = "hello"
        x = arg

    x = func()
    return x

The same goes for loop carried dependencies and variables escaping loops, e.g.:

def incompatible_types2(N):
    x = "hello"
    for i in range(N):
        print x     # ERROR! Inconsistent type for x!
        x = i

    return x

def incompatible_types3(N):
    x = "hello"
    for i in range(N):
        x = i
        print x

    return x        # ERROR! Inconsistent type for x if N <= 0

Cases where the type inferencer doesn’t know the type is often when you call a Python function or method that is not a numba function and numba doesn’t otherwise recognize.

Numba allows you to obtain the type of a expression or variable through the typeof function in a Numba function. This type can then be used for instance to cast other values:

type = numba.typeof(x + y)
value = type(value)

When used outside of a Numba function, it returns the type the type inferencer would infer for that value:

>>> numba.typeof(1.0)
>>> numba.typeof(cmath.sqrt(-1))

More Complex Types

Numba is in the process of being refactored to better define more complex types such as structs, pointers, strings and user defined classes. More on this soon...