Numba

Numba gives you the power to speed up your applications with high performance functions written directly in Python. With a few annotations, array-oriented and math-heavy Python code can be just-in-time compiled to native machine instructions, similar in performance to C, C++ and Fortran, without having to switch languages or Python interpreters.

Numba works by generating optimized machine code using the LLVM compiler infrastructure at import time, runtime, or statically (using the included pycc tool). Numba supports compilation of Python to run on either CPU or GPU hardware, and is designed to integrate with the Python scientific software stack.

Example

from numba import jit
from numpy import arange

# jit decorator tells Numba to compile this function.
# The argument types will be inferred by Numba when function is called.
@jit
def sum2d(arr):
    M, N = arr.shape
    result = 0.0
    for i in range(M):
        for j in range(N):
            result += arr[i,j]
    return result

a = arange(9).reshape(3,3)
print(sum2d(a))

More examples: examples.

Source and Downloads

$ git clone git://github.com/numba/numba.git

For tarballs see:

Installing

The easiest way to install numba and get updates is by using the Anaconda Distribution: http://continuum.io/downloads.html

If you have anaconda installed already:

$ conda install numba

or

$ conda update numba

For custom python environments see:

Website

See if our sponsor can help you (which can help this project):

Continuous Integration